

AFRL-IF-RS-TR-2005-394
Final Technical Report
December 2005

ANOMALY DETECTION IN DISPARATE
COMPUTER NETWORKS

ACS Defense, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-394 has been reviewed and is approved for publication

APPROVED: /s/
 ANDREW J. KARAM
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, JR.
 Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Final May 04 – Nov 05

4. TITLE AND SUBTITLE

ANOMALY DETECTION IN DISPARATE COMPUTER NETWORKS

6. AUTHOR(S)

Michael J. Corley

5. FUNDING NUMBERS
C - FA8750-04-C-0039
PE - 61102F
PR - 2311
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ACS Defense, Inc.
Burlington MA 01803

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-394

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Andrew J. Karam/IFGB/(315) 330-7290 Andrew.Karam@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Two SIMPCAP based statistical applications for monitoring network status. Both are in the form of independent
executable files. The first provides real-time and post mortem capability for visualizing in-bound and out-bound
bandwidth usage. User selectable parameters include the network IP address to monitor, a flag to distinguish between
real-time or off-line processing, and a field for selecting the sampling material interval for processing with RRD-tool.
The second tool provides a capability for measuring in-bound and out-bound traffic by protocol for using selectable time
intervals.

15. NUMBER OF PAGES14. SUBJECT TERMS
SIMPCAP, anomaly, disparate, RRD-tool

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

 16

 i

Table of Contents

1.0 Large Dataset Handling Research (Overview)..................................... 1

2.0 Distributed Data-set Collection .. 4

3.0 Large Dataset Management System... 4

4.0 Determining Network Status and Visualizations 7

5.0 SIMPCAP Extension Architecture... 11

List of Figures

Figure 1: Multi-file Input.. 5

Figure 2: Example Virtual File Utility Usage .. 5

Figure 3: Virtual File Command Line Invocation .. 7

Figure 4: Bandwidth Monitor .. 9

Figure 5: Packets per Second (PPS by Protocol)... 10

Figure 6: Pluggable Toolkit ... 11

Figure 7: Packet Injection Engine (PDE) ... 12

 1

1.0 Large Dataset Handling Research (Overview)

Examining large quantities of network traffic data for statistical purposes is a difficult
task. Packets of indeterminate size hurtling by at thousands to millions of packets per
second (real time), or multi-gigabyte collection files containing millions to billions of
packets to analyze provide a rich opportunity for streamlining and fine-tuning the
analysis process. In the current (circa 2005) best practice approaches for large data-
volume analysis, the normal strategy of throwing more horsepower at the problem seems
to be a very sub-optimum one. A more successful approach has been to refine the goal to
very specific statistic or objective, and then quickly sort through the data once to get that
information for display or further analysis.

This approach works reasonably well when real-time and relatively simplistic results are
the requirement, as in the case of the first large class of examination/monitoring
functions, the real-time information assurance function - an alerting function that warns
of immediate threats or problems to the network under observation. This is the case with
the standard operations floor in regional Network Control Centers (NCCs), where
operators have a small set of screens to watch and react when some automated function
turns an indicator from green to yellow (or red; sometimes accompanied by a klaxon or
siren). Dedicated tools sifting through traffic data to locate specific trend changes (traffic
rates, particular signature occurrences, catalogued patterns of behavior that trigger some
alert) are ideal for this environment and provide the current best protection at the front
end of network presence presented to the Internet.

In the case of interest for this task, though, the streamlining approach does not provide
sufficient flexibility to allow successful prosecution of the post-processing task of finding
more subtle events in the network traffic stream. In the post-processing domain, an
iterative approach is usually required prior to isolating and explaining appropriately an
event of interest from the traffic samples. There is still, however, a keen interest in
finding these subtle events in as timely a fashion as possible. This is the central problem
of interest we investigated in this sub-task. Primary measures of effectiveness included
speed and storage space requirements necessary to perform various standard network
security analysis tasks under the constraint of large analysis datasets.

There are two conceptual approaches to post-processing network data. First, appropriate
for smaller networks or capture sizes, is the development of algorithms that operate on
the data directly each time a statistic or characteristic is to be calculated. This provides
minimum overhead for storage of data – just the cost/space for the network capture itself
– but maximizes the processing time per statistic desired, as the data has to be processed
each time a statistic is desired. Further, given the current typical network tool based on
LIBPCAP, the network data has to be processed serially from the beginning of the
capture to the end to locate the desired packet structures to build the statistic.

The second approach is to pass through the network data once, and during that process
calculate as many statistics as possible and store that information for later observation

 2

and use. This provides (ideally) the minimum processing time for the data, but
maximizes the storage space necessary for the generation of the statistics. In addition,
this approach assumes that the desired statistics (at least some large portion of them) are
known in advance.

For both of these approaches, as data volumes increase, performance falls off rapidly.
For the first case, the requirement to serially process through the data set each time a
statistic is gathered becomes problematic, often lasting many minutes for each statistic.
For the second case, the multi-dimensional aspect of many of the statistics (for example,
time-to-live and time stamp versus source and destination IP address) multiplies storage
requirements significantly such that only very typical statistics are gathered because of
limitations in storage and retrieval of the calculated data.

In either case, the ability to rapidly find anomalous behavior in large network captures is
limited significantly. Solutions to this problem can be summarized generically as
follows:

• Process the archived network data faster
• Save collected data/statistics in less space
• Retrieve and compile the statistics more efficiently

Additionally, the interactive nature of the analysis process needs to be incorporated into
the optimization process; an analyst needs to interact with the network data and statistics
in a heuristic fashion with minimal distracting tasks along the way to finding the statistic
or characteristic of interest. Finally, the reporting and consolidation of an analysis
session’s results needs to be appropriate for rapid dissemination and understanding. The
task of translating the detected anomaly into a scheme suitable for incorporation into the
first-line alerting function (single-pass speedy processing of a particular anomaly) is not
addressed.

Solution alternatives and the “state space” representation concept

It is fairly easy to say “just process the data faster” as one way of speeding up the
anomaly detection process, but not quite as easy to actually put that theory into practice.
There are too many “speeds” to take into account. First, we are trying to detect a process
occurring in the midst of normal network traffic, which in itself is not very well behaved,
so the dividing line is not usually clear between normal and abnormal traffic. The speed
then is dependent on the variety and types of features that can be used to describe the
differences in the traffic characteristics which would allow the detection and isolation of
anomalous behavior. There are easily dozens of common protocols, each with possibly
dozens of values of interest in just the header content, and also with an indeterminate
number of values/features available in the data portion of each packet, leading to numbers
of potential features well into the multiple hundreds. Trying to get a contemporary
pattern recognition tool to stabilize with a few tens of features is possible, but several
hundreds of features are currently not tenable.

 3

Then, the “speed” of the algorithms is dependent on the highest dimensionality of the set
of data to be analyzed. If, for instance, we are comparing a small enclave (say, a class C
network) to a large enclave (a class B network), then the possible interactions between a
large set of outside addresses (for illustration purposes, a class B network) with each
enclave would have to track (2^8*2^16), or 2^24 possible interactions for the smaller
network and (2^16*2^16), or 2^32 possible interactions for the larger class B network (or
roughly 10^23 to 10^31 relations). In real scenarios, the external activity is somewhat
more restricted than a full class B network, but in one example enclave with a few
hundred hosts across five class C subnets, the average interactions across internal and
external addresses (as a two-dimensional x-y chart) still had on the order of 10^5
interactions over the course of a few days. In the example data provided for cross-
domain traffic (between .mil and .com domains), there were on the order of 10^7
interactions occurring in a very limited time set of data. The very real implication is that
a general data management approach to large-volume captures would need to routinely
handle feature set interactions on the order of 10^3 features by 10^5 interactions, or 10^8
observation types for a small network, and potentially up to 10^20 for large network
entities, such as cross-domain routes. With this order of magnitude in mind, we now look
at the possible ways to make the problem more feasible.

Process Archived Network Data Faster. Just adding CPU horsepower is not a clear
advantage; the volume of the active memory space required (10^3 for small enclave IP
addresses, by 10^5 for Internet IP addresses, by 10^3 features to track) could easily be
multiple gigabytes for a small to moderate enclave, and that is before any statistical
calculations take place. Then, the current best-practice tool basis (LIBPCAP) processes
files serially, from top to bottom, each time a statistic or feature is desired. Processing a
large file faster may not be as important as processing the right part of the file at the right
time. To this end, the SIMPCAP toolset includes an ability to search arbitrarily for
packets of interest within large capture files, and this is paired with a secondary file
which is built for each capture file relating file offset with time of capture within the file.
This basic pair of tools can combine to perform the following valuable functions:

• Gather statistics on particular time groups in a file, such as looking for the least-
frequent IP pairs in the highest density time periods in a file (to look for the clever
“needle in the haystack” intruder).

• Compile statistics on repetitive time periods so that a bias-removal approach uses
less data overall but still achieves a reasonable performance.

• Provide a capability to parallel process an archive (or group of archives) to
achieve much higher throughput than traditional libpcap approaches.

Save Collected Data/Statistics in Less Space. The secondary storage necessary to evolve
time-dependent statistics could be quite large. Longer-term statistics that show trends
and provide for trend-removal and bias-removal functions to improve anomaly detection
performance take up additional large volumes of secondary storage space. Raw
secondary storage is actually pretty cheap. The real cost of the large data sets is not in
the raw storage space itself, but in the timely access to the right data at the right time.
Any compression or reduction in complexity of the network data needs to be paired with
an ability to efficiently retrieve it and make use of it.

 4

2.0 Distributed Data-set Collection

A distributed data-set repository has been constructed for conducting analysis. These
constitute data-sets made available through other AFRL efforts in addition to local
enclave collections performed on demand. The repository includes network traffic from
two operational military sectors, NEADS (North East Air Defense Sector) and NSIRC
(National Security Incident Response Center). The NEADS traffic is composed of
approximately seventeen (17) days of complete twenty-four hour traffic segments.
This data is pertinent for testing of protocol level activity as expected in enterprise and
enclave networks. The NSIRC traffic is composed of approximately five-hundred (500)
segments averaging about one-half second (1/2 sec.) per file. The time segment for the
NSIRC traffic totals to approximately five (5) minutes. This is clearly a much larger
traffic volume and will be pertinent to testing of protocol level actively as expected in
Wide Areas Nets (WANs) and World-Wide Distributed (WWW) Nets. In addition, this
set is the basis for testing and analysis for development of the management system for
large order traffic volumes. The NEADS data-set totals in size of approximately 8.5
gigabytes and the NSIRC data-set totals in size of approximately 5 gigabytes. In addition
local collections from the NGCS (Next Generation Cyber Security) Lab have been
performed for additional support of testing. This data was generally captured as needed
and also provided the testing point for live network processing. In all cases, the data is
unclassified and uploaded to the NGCS NAS (Network Attached Storage) Server.

3.0 Large Dataset Management System

Extensive effort into various design processes for high volume data set management
techniques have led to the development of a Virtual File System (VFS) which enables an
analyst to logically relate and sift through multiple disparate data-sets by building virtual
(logical) representations that describe user specified criterion relationships between the
data-sets. Using this approach analysts interact with the virtual file in very similar
fashion standard processing.

The virtual file is a SIMPCAP based facility that enables the analyst to specify filters and
extract statistics and potentially common attributes across very large disparate sets of
network traffic. The major features include but are not limited to time based sampling,
packet density and data rate profiling, BPF filtering, and intra-file overlap detection.
Time based sampling enables a user to sort, reconstruct and analyze files over specified
time segments. Within a large scale network environment, there often arises scenarios in
which there are many capture files that are either too large or so small they cannot be
managed effectively with current tools. A good example is when a forensic analyst has a
repository of three-hundred (300) disparate capture (trace) files, and he or she knows very
little about the attributes. With currently available tools the analyst would likely perform
analysis on each individual file, packet-by-packet (as with ethereal, TCP-dump, etc.), or
perhaps even create a labor intensive batch process that performs a singe rigid operation.
With the virtual file utility, the analyst need only specify the files of interest and the
criteria desired such as a BPF filter and/or a sample interval, etc. Figures 1 and 2
illustrate the typical usage of the utility.

 5

Figure 1: Multi-file Input

Figure 2: Example Virtual File Utility Usage

 6

The structure of a virtual file is comprised of a header and a body. The header structure
contains information pertaining to sampling rate, number of samples per file, and all of
the LIBCAP files processed for inclusion into the virtual file. In addition, the header
stores certain basic attributes about each file. The body of is comprised of timestamp
versus byte offset values for each file where the values are determined based on the
sampling rate and resolution of each file. This is handy in cases where analysis requires
rapid look of arbitrary time segments or some type of parallel processing or handling of
packet content in one or more contexts. As a more general utility, the virtual file
provides pointer access to standard capture files in a distributed storage system. That is,
LIBPCAP files can be scattered locally on a single host or on many hosts over a large
scale network; and the virtual file abstraction provides seamless access to all files as if a
single capture entity. This option depicted by the “-v” option in Figure 2. Intra-file
overlap detection provides means to discover overlapping time segments between files.
This is often useful for sorting out data-sets from large scale distributed WANS in cases
where the analyst may know little or nothing about individual file attributes. Overlapping
files may indicate traffic from separate sensors. In such a case, it would useful to specify
a BPF filter to extract traffic that has common attributes in some context. One example
might include filtering all traffic originating from a particular subnet, IP or set of IP
addresses. This feature is illustrated in Figure 2 by “-f” option. Overlapping file may
indicate data redundancy, human error in the collection process, and perhaps even a valid
anomaly. In any case, such uncertainties should be caught prior to analysis so other
statistical measures not skewed leading to potential false alarms. Data rate and packet
density profiling are options that provide statistics for the actual data rate and number of
packets observed on a per sample interval basis, and for the entire analyzed set of files.
These figures are very common indicators used for determining network status.
Additionally, the output facilities for these options export formatted text which provides
sufficient flexibility for visualization with well packages as Excel or GNU plot. Figure 3,
(below) illustrates the command line invocation of the win32 executable. Listed is a print
out of all options and associated command line usage.

 7

Figure 3: Virtual File Command Line Invocation

4.0 Determining Network Status and Visualizations

Two SIMPCAP based statistical utilities have been developed for monitoring and
visualizing network status. Both are in the form of independent executable files. The
first provides real-time and post mortem capability for visualizing in-bound and out-
bound bandwidth usage. User selectable parameters include the network IP address to
monitor, a flag to distinguish between real-time or offline processing and a field for
selecting the sampling interval for processing with the RRD-tool. Figure 4 illustrates the
command usage and corresponding visualization. The second tool provides a capability
for measuring in-bound and out-bound traffic by protocol for using selectable time
intervals. Figure 5 illustrates the command usage and corresponding visualization. Both
tools taken together constitute the fundamental SIMPCAP pluggable framework for
defining independent solutions for specific monitoring requirements. In this case, the
user has the capability to compare in/out-bound bandwidth usage with in/out-bound
protocol over arbitrary time segments.

Determining network status for anomalous behavior is an ever changing model.
Computer networks ranging from distributed world-wide nets (WANs) to small enclaves
are always evolving and therefore the status from the perspective of the analyst changes
as well. Everyday new machines and devices join and are removed, and new services
(such IP telephony) are constantly emerging while old servicing are upgraded or go
offline. The rate of change and dynamic nature of content in these systems make it
especially difficult too formulate an effective model for determining normal versus
anomalous behavior. Because of these limitations, this effort as chosen not to provide a
specific targeted set of applications to analyze specific scenarios. For example by

 8

providing the tailored tools needed for identifying a particular class of DDOS
(Distributed-Denial of Service) attacks. Suppose a suspected attack was of an IP SPOOF
class, or DDOS attack which made use of vulnerabilities in a newly deployed IP
telephony service. Such a class of DDOS attacks often has a completely different set of
signatures from the former, rending previous detection capabilities virtually useless. This
effort has therefore sought to provide the analyst with a toolkit that provides flexible and
simplistic yet powerful facilities for custom analysis in an ever changing environment.
SIMPCAP and its pluggable framework provide such a facility. Figures 4 and 5 illustrate
the two basic examples of the SIMPCAP based analysis tools provided. Taken together,
such custom tools comprise the basis for the pluggable toolkit framework. Figure 6
illustrates the concept.

 9

Figure 4: Bandwidth Monitor

 10

Figure 5: Packets per Second (PPS by Protocol)

 11

Figure 6: Pluggable Toolkit

As shown above, in level one (1) the user defines custom SIMPCAP scripts tailored for
specific analysis. In level two (2), the user combines multiple individual tools, as
developed in level 1, to comprise a suite of tools for analyzing an entire class of anomaly
scenarios. As in the example above, the user developed a toolkit for a variety of
disparate DDOS and IP SPOOF class attacks.

5.0 SIMPCAP Extension Architecture

SIMPCAP has been integrated with LIBPCAP comprising a super-set of the native API.
The current version is 7.1 and is a candidate for an open source release. The latest
edition to the system incorporates facilities for random seeking and modified binary
searching for LIBPCAP based Ethernet save-files. The integration enables SIMPCAP
facilities to directly interact with the state of LIBPCAP run-time primitives. This was a
requirement to achieve true random access. The fundamental component enabling non-
linear access (developed in an earlier version of SIMPCAP) is called the packet detection
engine (PDE). The PDE exports two parameters to all client derived facilities. The first
is a packet criteria specification. This enables the user to specify the number of static

 12

packet field attributes used in identification of packets. The second is a confidence figure
that is passed to indicate the number of static fields that must be matched for a successful
identification. These parameters are intended for future use in appropriately handling
malformed and/or corrupted packets, and also for adjusting to system performance needs.
Figure 7 illustrates the basic hierarchy.

Figure 7: Packet Injection Engine (PDE)

As illustrated, the PDE directly enables non-linear seeking (Simpcap_Seek()) , and a
combination of simpcap_seek() and the PDE provides non-linear searching. All client
designs need only inherit from simpcap_tseek() to suit custom time based processing
needs.

